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1. Architectural Analysis

This work compared computer architectures by measuring fic execution of an identical set of high level

language programs. Comparative studies arc difficult and expensive as they require an environment in which

all the architectures can be analyzed on a common basis. Simulation has been used, but the slow speed makes

it prohibitively long to collect a significant sample. Performance measures, such as the number of

instructions, reflect not only architectural differences but factors (such as compilers) not related to tie

architecture.

The instruction streams of the IBM S/370, DEC PDP-11, and P-code machines were measured using a

microprogrammable processor--Emmy. The measurement mechanism is embedded into the interpreter (an

emulator) for the machine, and has access to all aspects of the instruction execution. The DEC VAX

instruction stream was measured on a VAX 11/780 using a trace feature in the architecture. A set of

FORTRAN programs was used for measurements, and reflect a scientific work load.
I

The analysis first studied the composition of tie instruction stream. Total number of instructions executed,

shows the VAX architecture to be most efficient, but measures of the activity necessary by the interpreter

indicate that the S/370 representation is fastest to interpret. Memory rcfcrcnce behavior indicated that the

8-bit displacement used by the VAX is very effcctive for local referencing, but VAX suffers in referencing

global objects. Measurements of branch behavior have shown that the PI)P-11 and VAX architectures

require 10-15% more branch instruction than an ideal representation of the program would indicate. This

architectural defect results from the short range of conditional branch instructions.

This work analyzed the interaction between compiler optimization techniques and the instruction streams that

result from optimization. Six S/370 compilers generated difTerent representations of the test work load, and

produced the data base for study of high level language behavior and architectural analysis. Optimization,

while reducing the resource demands of a program, does not apply uniformly to all aspects of instruction

execution. The fixed-point computation and memory reference demands are greatly reduced, but the control

requirements of a program are largely unaffected. Because the absolute occurrence of control related

instructions is constant, their relative frequency increases with optimization.
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2. Directly Executed Languages

A natural way to make compilation as straightforward as possible is to make the execution architecture fit the

high-level language. This work centers on a family of execution architectures called directly executed

languages, or DELs. High-level language statements are closely represented by DEL. instructions. DEL

representations minimize the number of bits needed in tie instruction stream for operand specification,

without resorting to encodings that require knowledge of the frequency of occurrence of individual operands.

A Pascal-to-DEL compiler and a DEL processor emulator are used to measure the number of instructions

required to nin five test programs to completion. The number is also measured for the HP 1000F, the IBM

370, Pascal P-code and the DEC Vax. The average of the ratios of the numbers for these to the number for

Adept is 3.46. The number of main memory bytes read for dat is 5.42 times that for Adept, and the ratio for

bytes written is 14.73. These results show that it is possible to make an execution architecture suitable for a

high-level language in a way that results in architectural measures that may indicate a higher speed of

execution and a lower cost of implementation than some familiar architectures.
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3. Concurrent Execution

The execution time of instruction can be effectively reduced by overlapping the start of the execution of one

instruction with the end of the execution of another. This process of overlapping instruction execution is

called pipelining and it is used on all "super computers". An example of an instruction stream which has been

pipelined is shown in Figure 3-1.

I IF I DC I AG I OF I EX I

I iF IDC A G I OF IF.X I
I IF I DC I AG i1 EX

I IF I DCI AGI OF I EX

Figure 3-1: Pipelined Execution

Extending the concept of pipelining to its ultimate would generate an execution sequence where all

instructions execute at the s-me time. But since simultaneous execution of all instructions would mean that

inputs are fetched at the same time and results are produced at the same time, simultaneous execution could

only be performed correctly if to instruction in the task required the completion of any other instruction to

perform its function. Since this is only possible in the most trivial of cases, the correct execution of all other

programs can only occur when instructions wait for other instructions to execute producing results which are

needed for their correct execution. An example of such an ultimate pipeline is illustrated in Figure 3-2.

Executing multiple instructions at a time will be called concurrent execution of instructions as opposed to

parallel execution which usually refers to a single instruction stream, multiple data stream style of

computation.

There are different degrees to which concurrent execution of instruction streams can take place. Using a

minimal amount of hardware, a small amount of concurrency can be detected providing a modest increase in

execution speed. The amount of concurrency detected in these schemes can be compared to the serial

speedup of traditional machines which have instruction prefetch but little or no pipelining. Introducing more

hardware increases the amount of concurrency which can be detected and subsequently the execution speed

of the task. Concurrency such as this can be compared to a highly pipelined machine which allows out of

order execution, multiple path exploration, and interleaved memory traffic.



I IF I DCl AGI OF I FX I

I DFI C AG L -I ,Ix

I IF!DC AG! lOF IXI

IF iDClGI LOF IFxI

Figure 3-2: The Ultimate Pipeline

Although the degrees of concurrency detection can actually be thought of as a continuum, four distinct levels

have been defined in our research. These levels are defined so that increasing level numbers increase the

amount of concurrency detected with a corresponding increase in the amount of difficulty of detection and

subsequently the amount of hardware needed for implementation. ihey include:
I

3.1 Level 0 - Pipelined Execution

The main feature of Level 0 concurrency detection is that there is no concurrency actually detected at all.

Level 0 concurrency is characterized by the fastest program execution possible with the single restriction that

an average maximum of one instruction is executed in each machine cycle.

3.2 Level 1 - Transparent Concurrency

Level 1 concurrency is characterized by a direct examination and exploitation of the concurrency which

existed in the original task. In this level of concurrency, only the concurrency which was explicitly apparent

in the task is detected.

3.3 Level 2 - Machine Detectable Concurrency

Level 2 concurrency is marked by taking advantage of all the concurrency %hich a machine can detect without

resorting to algorithm recoding or code manipulation.
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3.4 Level 3 - Algorithm Detectable Concurrency

Lcvel 3 concurrency is characterized by analyzing the job to be done and restructuring it in hardware and

software to produce a representation which will execute in a minimal amount of time using a minimum

number of steps. More precisely, Level 3 concurrency is all concurrency which can be detected

algorithmically. "lhiis detection process can occur at both the hardware and software level.

We have completed a fairly extensive study of the speedup potential at each of the above levels. One such

studylfound the concurrency available in a sample DEL program, shown in 3-3. Note: level 3a is compile

time detection only while level 3b represents both compile and runtime detection.

Level of Concurrency

0 1 2 3a 3b

43Dynamic Number 5 435 435 390 390
of Instructions

Machine CyclesMahn yls 435 306 180 121 93
to Execute 'rask

Speedup 1.00 1.42 2.42 3.22 4.19

Figure 3-3: Ratios for Different Levels of Concurrency

1I'erfrmnne FrahtWion of the ExcInaion Ap't'ts of Cornptt.r Architectures. by N. IInn. J. Iluck. S. Wakcflid andI R Wedig.

htcn~ioeriu al Worksho 011 I irh-I .ecl I allgiiagc Cotlhr Art'hiltw irc. Ft. I auidcrdalh .E, F Ikcccmbcr 193).
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